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Received 21 March 1989 

Abstract. In this letter we explore the knottedness of self-avoiding walks. We were not 
able to represent the data as a power law. 

The study of self-avoiding walks (SAW) has been one of continuing interest for many 
years, especially since de Gennes (1972, 1979) has shown its relationship to critical 
phenomena. Much of the recent work on various models of SAW has involved fitting 
the results to some power-law form and then relating the exponents in the power law 
to the critical exponents obtained in phase transitions (de Gennes 1979). 

Some recent work has been to characterise the topologically different classes of 
configurations of a single closed macromolecule (Michels and Wiegel 1982). It appears 
that Delbruck (1962) first proposed this problem and subsequently it has been taken 
up by a number of authors (see Michels and Wiegel (1982) for references). 

Recently Sumners and Whittington (1988) proved two theorems concerning knot 
probability in self-avoiding walks and polygons. 

Theorem 1 .  All except exponentially few sufficiently long self-avoiding polygons on 
the simple cubic lattice contain a knot. 

A linear polymer is never knotted since the ends of the polymer can be rethreaded 
through the entanglements. Sumners and Whittington developed a suitable definition 
for knotting in SAW and hence their theorem 2. 

Theorem 2. All except exponentially few sufficiently long self-avoiding walks on the 
simple cubic lattice contain a knotted arc. 

Their results showed the validity of the Frisch-Wasserman-Delbruck conjecture 
(see Sumners 1986), namely: for a self-avoiding polygon of length n, the knot probability 
tends to unity as n tends to infinity. 

There have been a number of numerical investigations, that of Vologodskii et al 
(1974) probably being the first. Their important result showed that for polygons of 
lengths less than about 150 the probability of finding a knot was of the order of 
or less. Michels and Wiegel (1982) generated equilibrium configurations of a ring 
polymer in infinite space. Their results are compatible with power and scaling laws. 

In this work we looked at the n dependence of the knot probability for self-avoiding 
walks and compared our results with those of Michels and Wiegel. In particular we 
tried to determine if the same power and scaling laws found for polygons are applicable 
to the knot probability in SAW. 
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Self-avoiding walks of length n were generated on a 5-choice cubic lattice. The 
techniques for this kind of generation are well documented (Wall et a1 1963, Windwer 
1970). Once a successful SAW of length n was completed it was tested for knottedness. 
Whereas previous workers have used the Alexander polynomial (Alexander 1928) as 
a test for knottedness, in this work we used the knot invariant of crossings to determine 
if a knot exists in the SAW. This was accomplished in the following manner: the 
coordinates of the last step of the walk were compared with the coordinates of previous 
steps to determine if a crossing occurred. A crossing will occur if two of the coordinates 
of steps i and j are the same (the third coordinate could not be the same since this 
would mean closure, whereas these walks were tested already and were determined to 
be self-avoiding). A comparison of the values of the third coordinate of steps i and 
j determined whether the crossing was over (+) or under (-). In figure l ( a ) ,  the first 
crossing is + (over), the second is - (under), and the third is + (over). In figure l (b ) ,  
the signs are reversed, namely -, +, -, going from crossings 1 to 3. In figure 1 (  c), we 
have crossing +, +, -. This is an unknot. When two crossings, one immediately after 
the other, are of the same sign, +, + or -, - they cancel each other in the counting 
of crossings. In order to form a knot, one must have a minimum of three crossings 
(Rolfsen 1976). 

When one is checking for the crossing invariant in this fashion it is necessary to 
distinguish between an actual knot and a twisted chain. Both will give the same results 
if the knot checking was terminated at this point. Referring to figure 2, figure 2(a )  is 
a twisted chain whereas figure 2(b) is a trefoil knot. Both show +, -, + crossing as 
noted in the figure and determined by our crossing checking method. Each chain 

(a  I (bl (C I 

Figure 1. Two trefoil knots, ( a )  and (b), and an unknot (c). The knots ( a )  and (6) are 
mirror images of each other. In ( a ) ,  if we start as 1 we get for crossings over (+) under 
(-) over (+). In (6) it is under (-) over (+) under (-). For ( c ) ,  over (+) over (+) cancel 
each other out resulting in ( c )  being an unknot. 

(01 I b )  

Figure 2. In ( a )  we have a twisted unknot whereas in (6) we have a trefoil knot. They 
both exhibit the crossings +-+. 
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which showed knot formation, by having three or more crossings, had to be distin- 
guished from a twisted chain. This was done as follows. In figure 2, if one follows 
the initial arrows in both figures the crossings takes place in figure 2(a) as +, -, + and 
returns as -, +, - so that the first (1) and last ( 6 )  crossings in figure 2 (a )  are the same. 
Whereas when we examine the trefoil, in figure 2 ( b ) ,  we find that the first and fourth 
crossings are the same and the sixth and third crossings go together. In any knotted 
system, if there are n crossings one obtains 2n double points by travelling through the 
planar projection of the knot. Using this difference as our guide, twisted chains were 
found if the first and last crossings occurred with the same coordinates. In the checking 
for crossings, the coordinates of the last atom in the generated chain are tested against 
the coordinates of the other atoms in the chain. If a knot is found the checking of the 
atoms is reversed. That is, the last atom becomes the first atom and vice versa. The 
checking is repeated. When the first crossing in this fashion is found the coordinates 
of the two crossings are compared. If they are the same, the chain is termed a twisted 
chain and is not counted as a knotted chain. 

The results of this work are shown in table 1. It is clear from the table that the 
number of knots increases strongly with the length of walks and then begins to taper 
off. For example, in going from size 100 to 200 the fraction of unknotted walks goes 
from 0.704 to 0.382; practically a 50% reduction. The same features are seen going 
from 200 to 300 and 300 to 400. However, the percentage change of size as well as 
knottedness is on a downward trend. In one run of length 1000 and sample size 100, 
98 of the walks showed knottedness. This is in agreement with theorem 2 of Sumners 
and Whittington. Of course the term ‘sufficiently long’ gives us wide latitude. 

Table 1. A summary of results. N is the length of the chain. S is the sample size for each 
value of N. B is the number of knots found per N and 5 is the fraction of unknotted SAW. 

N S B i 

100 
150 
200 
250 
3 00 
400 
5 00 

1000 

2000 
2000 
1000 
1000 
1000 
1000 
500 
100 

592 
1009 
618 
740 
858 
916 
472 

98 

0.704 
0.496 
0.382 
0.260 
0.142 
0.084 
0.056 
0.020 

We also subjected our data to a number of plots of the fraction of unknotted walks 
as a function of the size of the walk to see whether this work would give the same 
straight line plots found by Michels and Wiegel (1982). We were unable to represent 
our data as a power law and could therefore find no appropriate scaling laws for this 
topological problem. Our work differs substantially from that of Michels and Wiegel 
in three respects. Whereas they studied the topology of polymer rings we looked at 
the topology of self-avoiding walks. Their sample size was superior to ours by an 
order of magnitude and finally they checked for knottedness by use of the Alexander 
polynomial whereas we used the invariant of crossings. 

If we assume that our sample size is sufficiently large as to exhibit the trends looked 
for and that the knot checking by the different methods is equivalent it may be that 
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we are looking at two different topological questions, although one can conceive of 
an arc connecting the two end-points of the self-avoiding walk without violating the 
excluded volume condition. In that case, the results of the two studies should differ 
by a scaling factor which we do not find. It would be very useful to have more 
information on the n dependence of knot probability in polygons and self-avoiding 
walks. 

We are indebted to director Rex Franciotti and academic computing advisor T Thomas 
of the Mary Lou Buchanan Computing Center housed at Adelphi University for their 
continuing help and support. 
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